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1 Time-averaged orientational order

Fig. 4 of the main article shows the analysis for the experimental data. Figure 1 shows
the same analysis performed for simulations. There is very good agreement between
experiment and simulations.

Figure 1: (a-c): Same as Figure 4 in the main paper but now for the simulations. Snap-
shots of the simulation system at 0.5% pinning, showing the local orienta-
tional order parameter 〈|ψ6|〉t averaged over ≈ 70 τB in the different phases
(a: Γ−1 = 0.01429, b: Γ−1 = 0.01471, c: Γ−1 = 0.01563, ). The field of view
corresponds to 450µm×450µm. Voronoi cells are color-coded according to the
bar on the left. (d): Mean square displacement (MSD) calculated for particles
within a distance of 8d around pinning sites (region I in inset) and more than
24d away from them (region II). The temperatures for solid, hexatic and fluid
phase correspond to (a-c).
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2 Description of the movies

To illustrate the fluctuations of the order parameter near the hexatic-isotropic liquid and
hexatic-solid phase transition, we calculate the time evolution of the magnitude of the
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for both, experiment and simulation

for long time runs. Like in Fig. 4, a-c in the main text and Fig. 1 of the supp. mat.
particles are represented by their Voronoi cells and pinned sites are marked with crosses.
The Voronoi cells are color-coded with the magnitude of the local bond-order paramater
〈|ψ6|〉t averaged for a finite time window. This time window was chosen to be shorter
than the orientational correlation time at the hexatic-isotropic liquid transition to an-
alyze the present local order. This was repeated for a duration much longer than the
orientational correlation time at the given temperature. A movie (with linear time scale)
was constructed from the images. As can be seen in the movies for both, experiment and
simulation, the local bond order field shows heterogeneities in space and time. This can
be interpreted as critical(-like) fluctuations of the orientational order field. Patterns of
similar magnitude do not persist in time as expected for systems with phase equilibria,
nor do they move due to possible grain boundary dynamics. The patterns clearly emerge
and disappear on various time and length scales, marking a continuous (or second order)
phase transition. In addition, the fluctuations seem to be slightly enhanced in regions
with increased pinning which might point to a dependency of critical fluctuations on
quenched disorder.

• Movie 1: Experimental data recorded at Γ−1 = 0.01447 and 0.48% pinning, cover-
ing a time frame of ≈ 4080τB ≈ 8 days. 〈|ψ6|〉t was averaged over ≈ 42 τB .

• Movie 2: Simulation data recorded at Γ−1 = 0.0146 and 0.5% pinning, covering a
time frame of ≈ 2700τB . 〈|ψ6|〉t was averaged over ≈ 70 τB.

3 Polynomial fit criterion

In order to quantify the characteristic decay properties of g6(t) in the solid, hexatic
and fluid phase, the linearly equidistant g6(t) data points are fitted with a second order
polynomial fit on a double-logarithmic scale. This is achieved by calculating the least
square parabola

ln(g6(t)) = a+ b ln(t/τB) + c ln2(t/τB) (1)

with dimensionless coefficients a, b and c for the set of values (ln(t/τB), ln(g6(t))). To
characterize solid, hexatic and fluid phase, the relative contribution of curvature is con-
sidered, expressed by the ratio c/|b|. In the fluid phase, g6(t) decays exponentially, and
the polynomial fit (1) exhibits negative curvature, c/|b| < 0. In the solid phase, g6(t)
approaches a constant value such that the data is best approximated by a positively
curved polynomial, c/|b| > 0. Since the algebraic decay of g6(t) corresponds to a linear
decay in the log-log plot, the relative contribution of curvature vanishes, c/|b| ≈ 0. We
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Experiment Simulation

solid, Γ−1 = 0.0117, c/|b| = 0.1305 solid, Γ−1 = 0.0133, c/|b| = 0.1413
hexatic, Γ−1 = 0.0143, c/|b| = −0.0056 hexatic, Γ−1 = 0.0146, c/|b| = 0.0444
fluid, Γ−1 = 0.0154, c/|b| = −0.3107 fluid, Γ−1 = 0.0156, c/|b| = −0.4131

Figure 2: Exemplary g6(t) curves recorded in experiment & simulation (symbols) for the
solid (blue squares), hexatic (red triangles) and isotropic fluid phase (green
circles) fitted with the second order polynomial fit (1) (solid lines). The ef-
fective temperature Γ−1 and relative contribution of curvature c/|b| are stated
below the plot. The fraction of pinned particles is 0.48% in the experiment
and 0.5% in the simulation.

define a lower and an upper threshold, c/|b| = ±0.07 to map all g6(t) curves recorded to
the three phases (see Table 1).

phase g6(t) c/|b|

solid constant > 0.07
hexatic algebraic decay −0.07 ≤ c/|b| ≤ 0.07
fluid exponential decay < −0.07

Table 1: Characterization of solid, hexatic and fluid phase via the relative curvature
contribution in Eq. (1).

For an equivalent treatment of experimental and simulation data, we consider the
time-window 0.6 ≤ t/τB ≤ 5 and shift the origin to t0/τB = 0.6 to ensure b < 0, see
Fig. 2. The phase diagram depicted in Fig. 3 of the main article is obtained with
these settings. To test our approach for longer times, the polynomial fit is extended to
t/τB = 400 for the simulation data (Fig. 3), at which all properties of the phase diagram
are recovered (see Fig. 4).
As a further consistency check, we applied the polynomial fit criterion to correlation
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Simulation ( 0.6 ≤ t/τB ≤ 5) Simulation ( 5 ≤ t/τB ≤ 400)

hexatic, Γ−1 = 0.0146, c/|b| = 0.0444 hexatic, Γ−1 = 0.0146, c/|b| = 0.0552

Figure 3: Second order polynomial fit applied to exemplary simulation data for times
0.6 ≤ t/τB ≤ 5 (left) and 5 ≤ t/τB ≤ 400 (right).

function data recorded in Ref. [1] .The envelope of the local maxima of g6(r) was fitted
in the range 0.5 ≤ r/σ ≤ 64. In doing so, our approach was found to recover the
distinction drawn in [1] between curves corresponding to the fluid, hexatic and solid
phase (see Fig. 1 therein).

Figure 4: Phase diagram with simulation data fitted in the time-range 0.6 ≤ t/τB ≤ 5
(left) or 5 ≤ t/τB ≤ 400 (right). Open symbols represent simulation data,
while full symbols correspond to experimental results. The latter are not
altered and are shown for comparison only. The phase diagram does not change
significantly if the parameters are varied, covering a large range of values.

[1] N. Gribova, A. Arnold, T. Schilling, and C. Holm, J. Chem. Phys. 135, 054514 (2011).
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4 Further evidence of the continuous nature of the melting

process

A full cooling and heating cycle was conducted in the computer simulations. At each
temperature step, the mean specific energy 〈U〉 was calculated. The results are depicted
in Fig. 5. The cooling and heating branches collapse, which indicates a continuous
phase transition. In order to distinguish between the observed widening of the hex-
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Figure 5: Mean specific energy 〈U〉 for cooling (open circles) and heating (full diamonds).
The pinning fraction is 0.5%. The temperature range corresponding to the
intermediate hexatic phase is indicated in red.

atic phase with increasing disorder and the signature of a polycrystalline structure, we
examine a polycrystalline reference system by quenching an isotropic bulk fluid to the
deep solid phase in the computer simulation. The resulting configuration consists of
several crystalline regions with different orientations, which are sharply separated by
grain boundaries, see Fig. 6. In comparison, a snapshot of the system with pinning
in the hexatic phase exhibits no grain boundaries and apart from the spatio-temporal
fluctuations discussed in the main article, there is globally homogeneous orientational
order (Fig. 6). Furthermore, we monitor the probability distribution of the squared
value of the orientational order parameter ψ6L on various length scales. As discussed
in [1], a monomodal distribution is expected in the absence of polycrystallinity. Our
results are shown in Fig. 7 and clearly indicate a single peak in the distribution. While
in the isotropic fluid phase, the distribution diverges at ψ2

6L = 0 (Fig. 7 (a)), the lo-
cation of the peak shifts to intermediate values at the isotropic → hexatic transition
(b) and approaches higher values as the system is cooled further (c). For the pinning
system, the distribution is clearly monomodal, while the distribution is bimodal for the
polycrystalline reference system, see Fig. 7 (d).
To provide further evidence for the continuous nature of the phase transition, we con-

duct a finite-size scaling analysis of the fluctuation of the translational and orientational
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Figure 6: Left, Middle: Computer simulation snapshots showing the orientation of the
local director ψ6,i relative to the global director ψ6. The colorcode corresponds
to the bar on the left and is based on the normalized scalar product ψ6,i ·
ψ6/(|ψ6,i||ψ6|). Five- and sevenfolded defects are shown in black or white,
respectively. Left: Pure bulk system after a quench from Γ = 60 to Γ =
200. Middle: System with 0.5% pinning in the hexatic phase (Γ = 69.5)
Crosses indicate the positions of pinned particles. Right: Spatial and temporal
correlation functions g6(r) (top) and g6(t) (bottom) calculated for the quenched
polycrystalline system (red dashed curve). As a reference, typical computer
simulation curves from the hexatic phase are shown for the system with 0.5%
pinning (green solid / dotted curve).

Figure 7: Probability distribution of ψ2

6L calculated for subcells of sidelength L (stated
as a fraction of the total box length). (a-c) System with pinning, (d) Quenched
polycrystalline configuration (shown in Fig. 6).
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Figure 8: Top: Susceptibility χ6L of the orientational order parameter as defined in [2]
versus effective temperature calculated for subcells of sidelength L (stated as
a fraction of the total box length). The dashed line corresponds to Ti derived
from the analysis of g6(t). Bottom: Susceptibility χTL of the translational
order parameter. The solid line corresponds to Tm derived from the analysis
of g6(t). Data is shown for computer simulations, the pinning fraction is 0.5%.

order parameters ψT and ψ6, respectively. Therefore, we consider the translational and
orientational susceptibilities χTL and χ6L as defined in Ref. [2], Our results are shown
in Fig. 8. The susceptibility χ6L diverges at the value of Ti estimated by the analysis
of g6(t). At a lower temperature close to the estimated value of Tm, χTL undergoes a
reasonable increase, then decreases for large systems once again pointing to a possible
divergence for L → ∞. The maximum in the susceptibility χTL occurs at higher cou-
pling than that of χ6L (for L = 1/2). The existence of two distinct temperatures for the
divergent behavior of χ6L and χTL indicates the two-step melting process. Further, it
has to be pointed out that finding a proper reciprocal lattice vector ~G is essential for a
reliable analysis of the translational order parameter ψT , its correlation, and suscepti-
bility. For statistically independent ensembles, ~G will change and should be calculated
separately for every ensemble. This has been done in our analysis, we determined the
lattice vector that maximizes ψT for every ensemble. However, this becomes increas-
ingly difficult approaching the hexatic phase due to the increasing dislocation densities.
Furthermore, in the hexatic phase the reciprocal lattice vector is no longer defined since
the translational order is short range and no lattice exists.

[2] Y. Han, N. Y. Ha, A. M. Alsayed, A. G. Yodh, Phys. Rev. E 77, 041406 (2008).
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5 Spatial correlation functions

In addition to the analysis of the temporal correlation function g6(t) stated in the main
article, the spatial correlation function g6(r) = 〈ψ∗

6
(r)ψ6(0)〉 is discussed here. Figure

5 shows exemplary curves for g6(r) in the isotropic fluid, hexatic and solid phase for
experimental and simulation data. The decay behavior in the different phases is clearly
distinguishable. While in the isotropic fluid g6(r) decays exponentially, it has an al-
gebraic signature in the hexatic phase, and approaches a constant value in the solid,
excluding the possibility of polycrystallinity. Consistent with Poisson statistics, there is
an accumulation of pinned particles in the lower left corner of the experimental sample,
see Fig. 10. This induces a small distortion of the lattice in the lower left corner leading
to the weak decay of the experimental curve in the solid phase at Γ = 119.5. Since
the orientational correlation in the time domain is robust to such distortions it is better
suited to identify the transition temperature.

Figure 9: Spatial correlation function g6(r) of the bond order parameter in the pres-
ence of quenched disorder plotted versus reduced distance r/d on a double-
logarithmic scale. The fraction of pinned particles is 0.48% in the experiment
and 0.5% in the simulation. Exemplary curves are shown for the isotropic
fluid (green), hexatic (red), and solid (blue) phase, where experimental data
is drawn with solid, computer simulations with dashed lines.

8



Figure 10: Snapshot of the system at Γ = 119.5 illustrating the defect distribution.
Particles with six nearest neighbors are colored gray, fivefold coordinated sites
red, sevenfold green, and particles with more than seven or less than 5 nearest
neighbors are colored blue. Pinned particles are marked with crosses. The
lower left of the field of view shows a small distortion due to an accumulation
of pinned particles in the experiment.
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